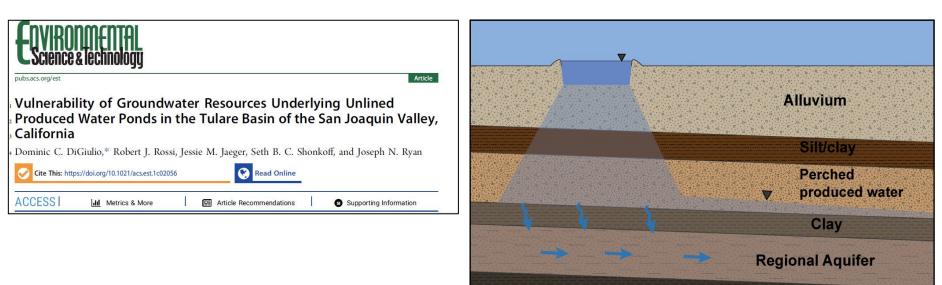
Vulnerability of Groundwater Resources Underlying Unlined Produced Water Ponds in the Tulare Basin of the San Joaquin Valley, California


Dominic C. DiGiulio^{1,2}, Robert J. Rossi¹, Jessie M. Jaeger¹, Seth B.C. Shonkoff^{1,3,4}, Joseph N. Ryan²

¹ PSE Healthy Energy, Oakland, CA

² Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO

³ Department of Environmental Science, Policy, Management, University of California, Berkeley, CA

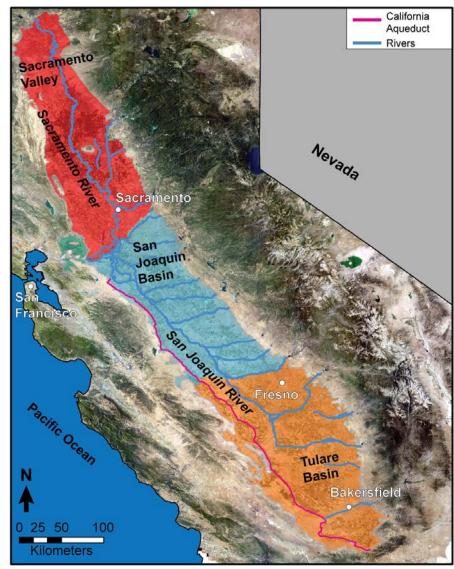
⁴Lawrence Berkeley National Laboratory, Berkeley, CA

Physicians, Scientists, and Engineers (PSE) for Healthy Energy is

an energy science and policy research institute focused on the public health, climate, and environmental dimensions of energy production and use.

We conduct original research, translate existing research for nontechnical audiences, and disseminate scientific information and analyses to inform policy at the local, state, and federal levels.

Introduction



Tulare Basin

- The San Joaquin Valley occupies the southern two-thirds of the Central Valley.
- The San Joaquin Valley is separated into the San Joaquin Basin to the north and the Tulare Basin to the south.
- ~99% of unlined produced water ponds in California are in the Tulare Basin.

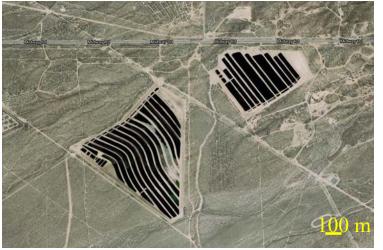
Sustained droughts and continued groundwater depletion in the San Joaquin Valley has highlighted the need to protect remaining groundwater resources from degradation associated with industrial practices including those associated with oil and gas development.

PSE

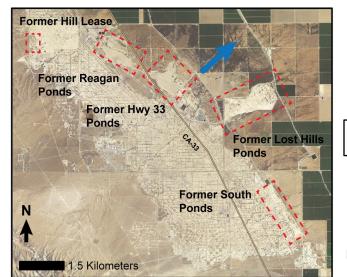
Disposal Practice Dating Back to 1900

Aerial image of the McKittrick 1-1 and 1 & 1-3 Facilities. Image from Geotracker.

One area of growing concern is the impact to groundwater resources from ongoing and historical disposal of produced water into unlined produced water ponds.


This disposal practice has occurred in the Tulare Basin since at least 1900.

Impact to groundwater from disposal of produced water into unlined impoundments is well documented.

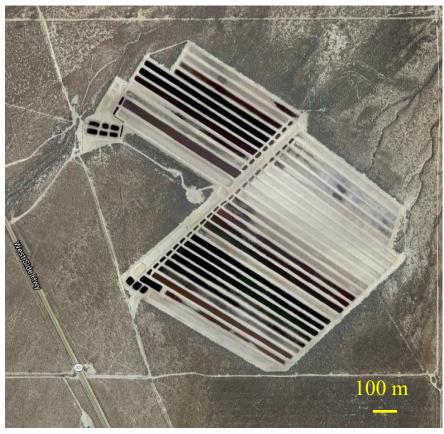

Classification of Produced Water Ponds

An <u>active produced water pond facility</u> currently receives produced water.

Aerial image of the Broad Creek 2 Facility from Geotracker

PSE

An <u>inactive produced water pond facility</u> has a physical connection to a produced water source but does not currently receive produced water.



Aerial image of McKittrick 6A, 6B from Geotracker

Closed Facilities.

Figure from DiGiulio et al. (2021)

Treatment Prior to Discharge

Aerial image of the McKittrick 1 & 1-3 Facilities. Image from Geotracker.

Prior to discharge to unlined ponds, produced water may be treated with emulsion breakers, surfactants, clarifiers, and other additives to facilitate oil/water separation.

In large complexes, produced water enters smaller unlined ponds that provide for additional floatation and skimming of remaining undissolved oil prior to flowing into larger unlined ponds for evaporation and percolation.

Only 0.25% of produced water discharged to unlined ponds is treated beyond deoiling.

Treatment (as reported under SB 1281, 2014-2017)	San Joaquin Valley (%)
Deoiling	94.87
Deoiling + Other Treatment	0.25
No Method	2.06
Membrane Treatment	0.00003
Desalination	0
Untreated	2.82

7

Methods and Trends of Produced Water Disposal

The primary method of produced water management has been and remains underground injection for enhanced oil recovery and disposal.

However large volumes of produced water have been disposed in unlined produced water ponds, especially prior to 2014.

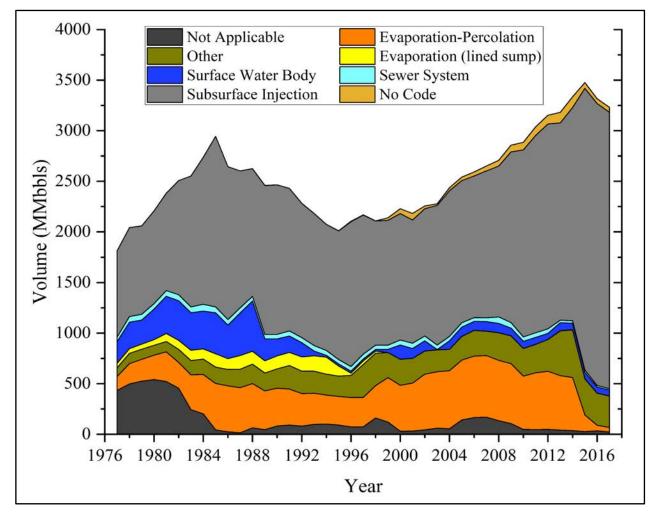


Figure from DiGiulio et al. (2021).

Cumulative Surface Disposal Volumes

Between 1977 and 2017, over 16 billion barrels of produced water were disposed in unlined produced water ponds representing a potential wide-scale legacy groundwater contamination issue.

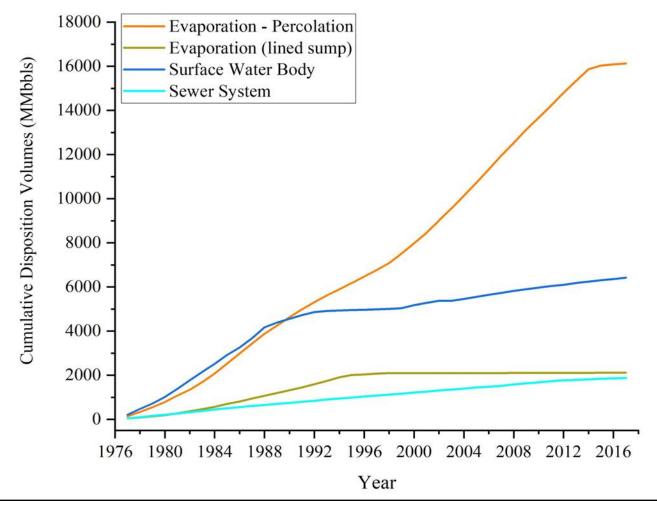
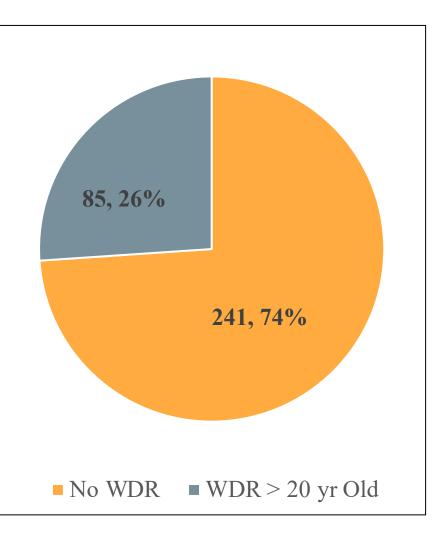
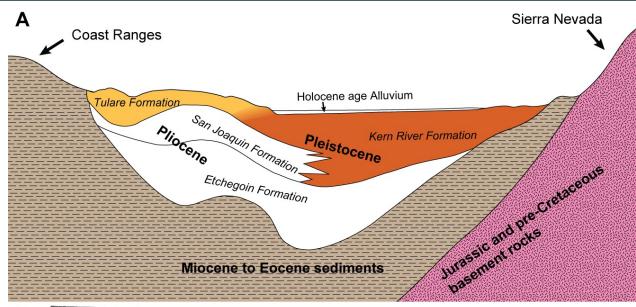



Figure from DiGiulio et al. (2021).


Increased Regulatory Effort After 2014

In May 2014, the Central Valley Regional Water Quality Control Board began an effort to better regulate unlined produced water ponds. They located 326 facilities with 1,100 produced water ponds.

Formations Having Groundwater Resources

(a) Generalized cross-section of the southern San Joaquin Basin created using information from Gautier and Hosford Scheirer (2007). (b) Inset map illustrating the approximate location of generalized cross-section. Figure from DiGiulio et al. (2021) (ES&T).

Groundwater resources are primarily present in alluvial deposits, Kern River Formation, and Tulare Formation.

Groundwater in the Kern River Formation is primarily calcium bicarbonate type reflecting weathering from the Sierra Nevada.

In the western portion of the basin, groundwater in the Tulare Formation is calcium/sodium sulfate type water.

In general, levels of total dissolved solids (TDS) increase from east to west as bicarbonate is replaced by sulfate and to a lesser extent chloride.

Definition of Protected Groundwater

Maximum TDS (mg/L)	Applicability to O&G Industry	Enforceability	Overseeing Agencies
3,000 mg/L or EC < 5,000 µS/cm for municipal water supply (MUN)	Land disposal, produced water ponds	<i>States Sources of Drinking Water Policy</i> (SWRCB Res No. 88-63 (SWRCB 2006). TDS and EC not defined for other beneficial use such as that used for agriculture (AGR).	SWRCB
Undefined	Conventional O&G Development	PRC § 1722.22 for casing requirements	CalGEM
10,000	Well stimulation	CA Water Code § 10783(k)(2)	CalGEM, SWRCB
10,000	UIC Program	USDW, protected unless exempted, 40 C.F.R. 144.3	EPA, CalGEM
10,000	O&G development on federal or tribal land	Onshore Oil & Gas Order No. 2, 53 Federal Register 46798	BLM, CalGEM, SWRCB

In the State's Sources of Drinking Water Policy, one criterion used to determine the suitability of groundwater for domestic or municipal beneficial use is groundwater having a TDS concentration < 3000 mg/L or EC < 5000 µS/cm. There is not a TDS criterion or numerical standards for protection of groundwater having agricultural or other beneficial use.

There is no explicit protection of groundwater having TDS levels > 3000 mg/L underlying or in the vicinity of produced water ponds.

This is inconsistent with and less stringent than protection of groundwater in the UIC program as required by EPA pursuant to the SDWA and during well stimulation in California (e.g., hydraulic fracturing) where groundwater is explicitly protected to a level of 10000 mg/L TDS.

A more detailed discussion of state policies regarding groundwater having beneficial use is discussed in Supporting Information.

Basis for Protected Groundwater Definition

LABORATORY

LLNL-TR-669645

Recommendations on Model Criteria for Groundwater Sampling, Testing, and Monitoring of Oil and Gas Development in California

Bradley K. Esser¹, Harry R. Beller², Susan A. Carroll¹, John A. Cherry³, Jan Gillespie⁴, Robert B. Jackson⁵, Preston D. Jordan2, Vic Madrid¹, Joseph P. Morris¹, Beth L. Parker³, William T. Stringfellow², Charuleka Varadharajan², and Avner Vengosh⁶

¹Lawrence Livermore National Laboratory, Livermore, California ²Lawrence Berkeley National Laboratory, Berkeley, California ³University of Guelph, Guelph, Canada ⁴California State University, Bakersfield, California ⁵Stanford University, Stanford, California ⁶Duke University, Durham, North Carolina

June, 2015

Final Report California State Water Resources Control Board

State of California Contract 14-050-250; LLNL Work for Others Proposal L15606

Reasons to Maintain a Definition of Protected Groundwater Equivalent to an USDW During Well Stimulation in California

Seth B.C. Shonkoff, MPH, Ph.D., PSE Healthy Energy Dominic C. DiGiulio, Ph.D., PSE Healthy Energy

Presented at:

The California State Water Resources Control Board Public Meeting on:

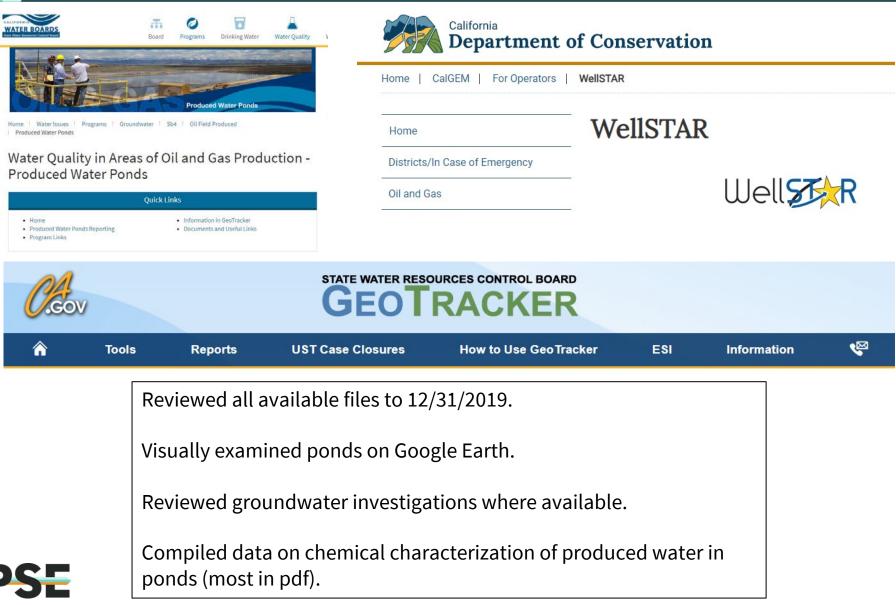
Staff Workshop Review of Model Criteria for Groundwater Monitoring in Areas of Oil and Gas Well Stimulation Definition of "Protected Water"

> Sacramento, CA May 10, 2019

The panel stated monitoring at 10,000 mg/L TDS is appropriate because it aligns with EPA's UIC program and is "technically and economically feasible to desalinate" water at this level of salinity (Esser et al. 2015).

Objectives of Investigation

The objective of this investigation was to determine whether past and present disposal of produced water into unlined produced water ponds poses a risk to groundwater resources in the Tulare Basin. To achieve this objective, we:


- (1) determined the number, status, and locations of produced water ponds in the Tulare Basin,
- (2) compiled available information on the composition of produced water discharged into produced water ponds,
- (3) estimated levels of total dissolved solids (TDS) in groundwater underlying and in the vicinity of unlined produced water pond locations, and
- (4) summarized locations where groundwater monitoring well data indicate impact to groundwater resources in the Tulare Basin from this disposal practice.

Methods

Number and Locations of Produced Water Ponds

TDS Levels in Groundwater Having Coordinates

Home Gama

Groundwater Ambient Monitoring and Assessment Program (GAMA)

6,974 Municipal and domestic wells.

Prepared in cooperation with the California State Water Resources Control Board and the Bureau of Land Management

A product of the California Oil and Gas Regional Groundwater Monitoring Program

Preliminary Groundwater Salinity Mapping Near Selected Oil Fields Using Historical Water-Sample Data, Central and Southern California

Water Availability and Use Science Program

Brackish Groundwater in the United States

1,985 Municipal and domestic wells.

2,282 Municipal and domestic wells.

1,126 production wells (provided information of water resources with depth).

Only used data where information was available on depth.

Water wells considered here (11,241) are a subset of wells in the Tulare Basin. Most water wells in California are identified as a centroid in the Public Land Survey System (~650 acre area). Insufficient information for a domestic well proximity analysis.

Used algorithm, inverse distance to a power (n=2) to contour levels of total dissolved solids.

Results and Discussion

Produced Water Database in Tulare Basin

A	В	с	D	E	F	G	н	J	K	L	M	N	0	Р	Q	RS	T	UV	w	X	Y	ZAA	AB	AC	AD	AE	AF	AG	AH	AI
Field Name	Field Code	Lease Name	Operator	Geo Tracker GlobaIID/ Order No.	mber of Ponds	2 0	2 -		Sec		Range	County	Latitude	Longitude	Est. Lat, Long from PLSS, Y=1, No =	Irrigation Pond Unlined Active Pond	Unlined Inactive Pond	Unlined Closed Pond Lined Active Pond	Lined Inactive Pond		Lined or Unlined Inactive Pond Lined or Unlined Active Pond	or Unlined	-	Ponds per Facility for Plotting	Status of Ponds for Plotting	Centroid of Facility for Plotting - Latitude	Centr Longi	Pond Data Cronnelwoter Data	Groundwater	Groundwater
1366 Semitropic	690	Supreme	Carneros Energy	L10006216376	1 (0 1	1	Closed	14	275	23E	Kern	35.571931	-119.47424	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.5719312	-119.47424		o F	Kern
1367 Semitropic	690	USL	California Resources Production Corporation	L10006410854	1 1	1 1		Closed			23E		35.57151	-119.47566		0 0	0	0 0	0	0	0 0	1		1	closed	35.57151	-119.47566			Cern
1368 Semitropic	690	Williams Elliot-15	Carneros Energy	L10003664008	1 (0 1		Closed		27S			35.575399	-119.47466		0 0	0	1 0	0	0	0 0	0			unlined, closed	35.5753986	-119.47466			Kern
1369 Semitropic	690	Williams Elliot-24	Carneros Energy	L10008264964	1 (0 1		Closed					35.561741	-119.45042		0 0	0	1 0	0	0	0 0	0			unlined, closed	35.5617413	-119.45042			Cern
1370 Stockdale	786	Panama	Crimson Resource Management	L10006481569 o		1 1	1	Inactive		30S			35.31087	-119.05128		0 0	1	0 0	0	0	0 0	0			unlined, inactive		-119.05128			Cern
1371 Stockdale	786	Tenneco	Crimson Resource Management	L10003853167		1 1		Inactive		305			35.31504	-119.06386		0 0	1	0 0	0	0	0 0	0			unlined, inactive		-119.06386			Cern
1372 Strand	787	Posuncula KCL	?	L10009651722		0 2	2	closed		305			35.336041	-119.24051		0 0	0	2 0	0	0	0 0	0			unlined, closed	35.3360406	-119.24051			Kern
1373 Strand	787	Shell-Ohio	?	L10009628444	8 (0 8	3	inactive		305			35.332391	-119.24349	1	0 0	8	0 0	0	0	0 0	0			unlined, inactive	35.3323913	-119.24349	no n		Cern
1374 Tejon	752	JV	California Resources Production Corporation	?	1 1	1 0		Inactive		11N			?	?	0	0 0	1	0 0	0	0	0 0	0			unlined, inactive	?	?	no n	o K	Kern
1375 Tejon	752	JV-32	Stockdale Oil & Gas	L10001758719	7 (0 7	7	inactive		11N			34.988582	-118.92606	0	0 0	3	0 0	4	0	0 0	0		7	unlined, inactive	34.988582	-118.92606		o F	Kern
1376 Tejon	752	OMB-33	Stockdale Oil & Gas	?	1 (0 1	1	closed		11N			34.990042	-118.9112	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	34.9900416	-118.9112		o F	Kern
1377 Tejon	752	Section 32	Stockdale Oil & Gas	L10003819252	7 (0 7	7	closed		11N			34.986763	-118.92931	0	0 0	0	4 0	0	3	0 0	0		7	unlined, closed	34.9867634	-118.92931		o F	Kern
1378 Tejon	752	Transition	California Resources Production Corporation	?	1 1	1 0)	Closed	32	11N	19W	Kern	34.98667	-118.93008	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	34.98667	-118.93008	no n	0 F	Kern
1379 Tejon SE	752	SCT	Drilling & Production Company	L10002222565	1 1	1 1		inactive	12	10N	19W	Kern	34,96601	-118.86193	0	0 0	1	0 0	0	0	0 0	0		1	unlined, inactive	34,96601	-118.86193	no n	0 F	Cern
1380 Tejon Hills	756	Roco Lease (A)	Steele Petroleum Company	L10003550937	1 (0 1		closed	15	11N	18W	Kern	35.036971	-118,78749	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.0369711	-118,78749	no n	0 F	Cern
1381 Teion Hills	756	Roco Lease (B)	Steele Petroleum Company	L10004633346	1 (0 1		closed	15	11N	18W	Kern	35.039986	-118,78505	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.0399862	-118.78505	no n	0 F	Cern
1382 Tejon Hills	756	Roco Lease (C)	Steele Petroleum Company	L10003223363	1 (0 1		closed	15	11N	18W	Kern	35.041796	-118,78054	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.0417963	-118,78054	no n	0 F	Cern
1383 Tejon Hills	756	Sunset-Tejon 10	Havens Oil Company	T1000006814	1 1	1 1		inactive	11	11N	18W	Kern	35.05565	-118,76873	0	0 0	1	0 0	0	0	0 0	0			6 - C			no n	0 F	Cern
1384 Tejon Hills	756	Sunset-Tejon 10	Havens Oil Company	T1000006814	1 1	1 1		inactive		11N			35.05151	-118,77922	0	0 0	1	0 0	0	0	0 0	0		2	unlined, inactive	35.05358	-118,77398	no n	0 F	Cern
1385 Teion Hills	756	Sunset-Tejon 15	Havens Oil Company	?	1 1	1 0		inactive	15	11N	18W	Kern	35.04365	-118,78165	0	0 0	1	0 0	0	0	0 0	0		1	unlined, inactive	35.04365	-118.78165	no n	0 F	Cern
1386 Tejon Hills	756	Tejon Ranch 22	Chevron Texaco Exploration & Development	L10007621397	1 (0 1	1	closed	21	11N	18W	Kern	35.019164	-118.80428	0	0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.0191644	-118.80428	no n	0 F	Cern
1387 Tejon North	758	KCL	Polaris Production Inc	L10008455577	1 (0 1		inactive	25	11N	20W	Kern	35.011932	-118.95838	0	0 0	1	0 0	0	0	0 0	0		1	unlined, inactive	35.0119317	-118.95838	no n	0 F	Cern
1388 Temblor Ranch	762	Delanty	LDD Energy, LLC	?	1 1	1 0		inactive	36	298	20E	Kern	35.3623	-119.77139	0	0 0	0	0 0	0	0	1 0	0						no n	0 F	Kern
1389 Temblor Ranch	762	Delanty	LDD Energy, LLC	?	1 1	1 0)	inactive	36		20E		35.36253	-119.77119		0 0	0	0 0	0	0	1 0	0		2	inactive	35.362415	-119.77129	no n		Cern
1390 Ten Section	766	KCL 59	California Petroleum Group Inc.	?	1 (0 0) 1	Removed	?			Kern	35.29997	-119.23914		0 0	0	0 0	0	0	0 0	1							- f	
1391 Ten Section	766	KCL 59	California Petroleum Group Inc.	?	1 () 1	Removed	?	?	?	Kern	35.30022	-119.23908		0 0	0	0 0	0	0	0 0	1		2	closed	35.300095	-119.23911		-+	
1392 Valpredo	808	SP 48	Havens Oil Company	?	1 1	1 0		inactive	35	12N	19W	Kern	35.08068	-118,8708	0	0 0	0	0 0	0	0	1 0	0						no n	0 F	Cern
1393 Valpredo	808	SP 48	Havens Oil Company	?	1 1	1 0)	inactive		12N			35.08055	-118.8708	0	0 0	0	0 0	0	0	1 0	0		2	inactive	35.080615	-118.8708			Cern
1394 Wasco	822	Mushrush	Bennett Petroleum	L10007393549	1 0	0 1	1	closed	7	275	24E	Kern	35.594951	-119.42981	0	0 0	0	1 0	0	0	0 0	0				35.5949509				Cern
1395 Welcome Valley	826	Mackessy	E&B Natural Resources Management Corporation	L10004263820	1 1	1 1		inactive	7	26S	19E	Kern	35.68117	-119.96698	0	0 0	1	0 0	0	0	0 0	0		1	unlined, inactive	35.68117	-119.96698	no n		Cern
1396 Welcome Valley	826	Sun Mayberry	McAdams Arthur	L10009251743	1 (0 1	1	closed	1	26S	18E	Kern	35.691893	-119.97517		0 0	0	1 0	0	0	0 0	0		1	unlined, closed	35.6918931	-119.97517	no n		Kern
1397 Wheeler Ridge	832	W.R.U.	California Resources Production Corporation	?	1 1	1 0)	closed	28	11N			35.01567	-119.01277	0	0 0	0	0 0	0	0	0 0	1		1	closed			no n	0 F	Kern
1398					1879	1317	60								110	29	529	457	36	43	27	76	95	1879					\neg	
1200	1	1		1			-	1	-	-	1	-	1	1		-						-	+ +	-		1		1 1		

Excel spreadsheet in supporting information containing a comprehensive database on location and status of produced water ponds in Tulare Basin.

Potential Identified Closed Facilities

Potential closed facility west of the Belridge North Field. Figure from Geotracker.

PSE Potential closed facility west of the Belridge North Field. Figure from Geotracker.

Potential closed facility west of the Belridge North Field. Figure from Geotracker.

Potential closed facility in Midway-Sunset Field. Figure from Geotracker.

Number and Status of Produced Water Ponds

Excluding ponds used to mix produced water with surface and groundwater for irrigation, there appears to be at least 1,850 active, inactive, and closed produced water ponds in the Tulare Basin.

At least 85% (1,565/1,850) of produced water ponds in the Tulare Basin are unlined, of which 31% (484/1,565) are still active.

Source	Number of Ponds Listed	Number of Ponds Unique to Source						
SWRCB List	1317	511						
WellStar	311	60						
Geotracker	1213	407						

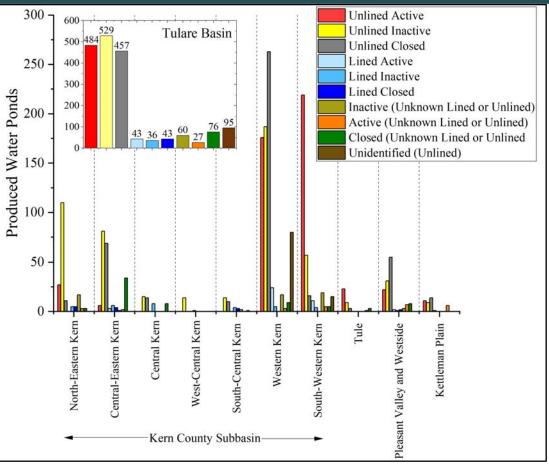
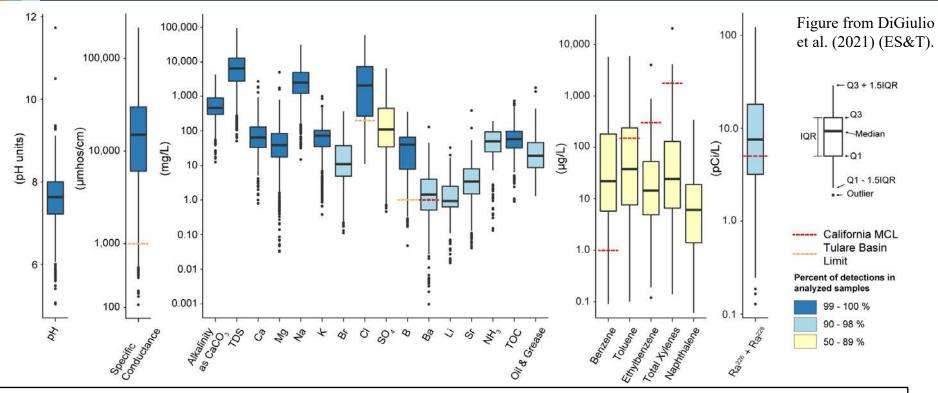



Figure from DiGiulio et al. (2021) (ES&T).

No individual database could accurately account for all produced water ponds. The discrepancy between the SWRCB List and Geotracker is due in part to lack of identification of many closed facilities on the SWRCB List. Other reasons for discrepancies are unclear.

Chemical Composition of Water in Ponds

Most samples from larger facilities where multiple sampling events occurred.

Method detection limits (MDLs) were not used to calculate median values. MDLs at times greater than detected concentrations at other times. Only parameters detected at a frequency >50% illustrated. Complete dataset in supporting information.

Effluent limits for discharge into produced water ponds in Tulare Basin are **1,000 µS/cm for specific conductance, 200 mg/L for chloride, and 1 mg/L for boron**. Effluent limits do not exist for other parameters.

Since pH is circumneutral, most ammonia present as ammonium ion.

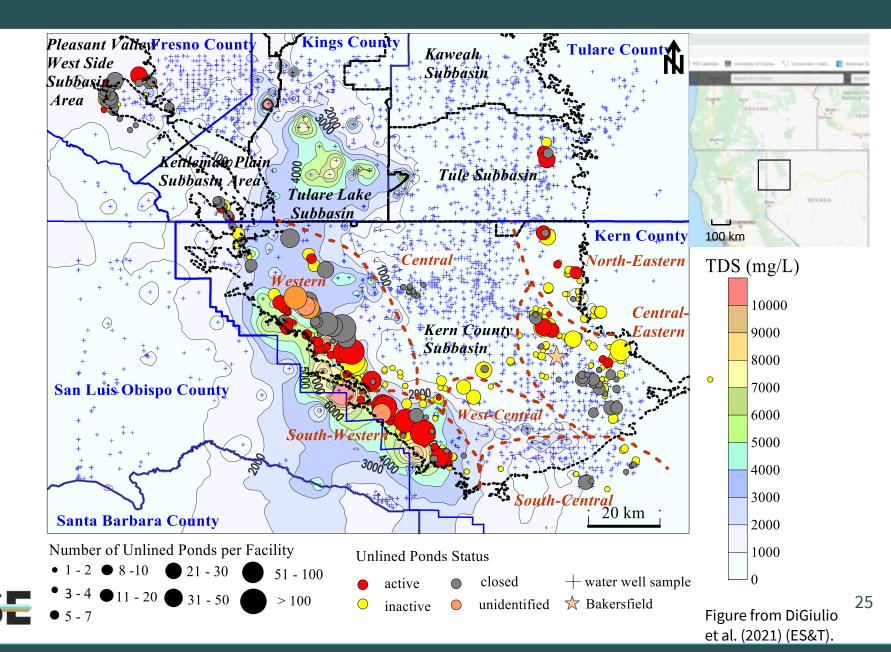
Detection of organic compounds largely limited to BTEX compounds and naphthalene.

EC, TDS, Cl, and B Facility Summary

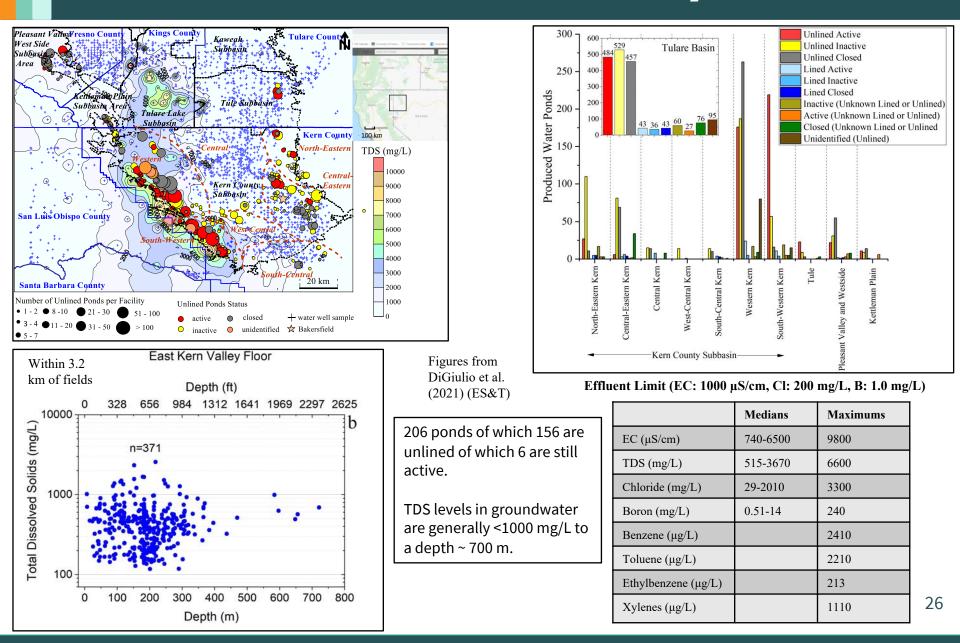
					-	-									1	-	
Field	Lease	EC min (µS/cm)	EC median (μS/cm)	EC max (µS/cm)	E	TDS min (mg/L)	TDS median (mg/L)	TDS max (mg/L)	E	C1 min (mg/L)	Cl median (mg/L)	Cl max (mg/L)	ц	B min (mg/L)	B median (mg/L)	B max (mg/L)	ц
Northeastern Kern S	Subbasin	23		0	80 3	26 X	9		12	-	- 22	2.5		5			2.2
Jasmin	Quinn	600	660	795	28	380	420	540	27	50	57	69	28	0.58	0.76	1.1	28
Kern Front	No. 2 Treatment	220	780	1100	30	150	515	750	30	25	85	180	30	0.22	0.84	1.2	30
	Pedro USL	NA	NA	NA	0			6400	1			1400	1			7.9	1
	Signal	540	550	1800	6	320	375	1000	4	53	59	380	6	0.17	0.24	1.1	6
Kern River	Beardsley and Carrier	770	894	930	4	512	573	629	4	108	128	140	4	1.1	1.4	2.2	7
Mount Poso	Jones	NA	NA	NA	0			600	1			120	1			0.90	1
Poso Creek	Desert Glow	NA	NA	NA	0	350	360	370	2	43	56	68	2	0.89	0.91	0.93	1
	Government			490	1			350	1			60	1			0.65	1
	McVan	NA	NA	NA	0			860	1			91	1			0.94	1
Central Eastern Ker	n Subbasin								122						· ·		
Edison	Claflin			910	1			620	1			100	1			0.8	1
	Fee 34	3975	5800	7400	25	2400	3500	4250	19	1200	1800	2410	23	6.0	13	210	23
	Lehr	580	740	890	16	425	515	761	10	19	29	78	16	0.38	0.51	0.85	16
	Racetrack	960	2070	4860	3	630	1200	3500	4	110	310	780	4	1.0	2.5	6.2	4
	Race Track Hill	4300	6500	9800	35	2400	3670	6600	35	1300	2010	3300	37	8.8	14	240	36
Western Kern Subba	asin			N21	501		2		V8				0				
Asphalto	CA Federal A	NA	NA	52300	1			32100	1			14500	1			148	1
	Ferguson	48000	49300	50600	2	30000	30530	31060	2	16000	16035	16070	2	110	129	147	2
	Standard	51000	52000	53000	2	32000	33000	34000	2	18000	19500	21000	2	150	155	160	2
Carneros Creek	Anderson			4200	1			3700	1			140	1			2.4	1
	Standard	3900	4200	4500	2	2700	3635	4510	2	120	150	180	2	1.7	1.9	2.1	2
	Santa Fe Energy	4200	4450	4700	2	3700	4345	4990	2	140	160	180	2	2.4	3.0	3.6	2
	Theta (30)	4700	5350	11000	4	3300	5625	10400	4	150	170	410	4	2.1	2.4	2.6	4
Chico-Martinez	Mitchel	5500	10300	58900	27	3060	5740	32400	28	1400	2800	36000	29	20	44	64	29
Cymric	Anderson	NA	NA	NA	0			29000	1			13000	1			210	1
	Ball	NA	NA	NA	0			20000	1			11000	1			91	1
	Bowles	NA	NA	NA	0			17000	1			7600	1			90	1
	Clifford Trust	22000	27000	32000	2			11000	1	5300	6800	11000	3	56	70	92	3
	Fee	NA	NA	NA	0			21000	1			9400	1			100	1
	Lehi-Richardson	31000	35300	36000	7	19000	22000	22000	7	10000	12000	15000	7	82	88	120	7
	McKittrick 1&1-3	14600	23500	58000	58	7554	14000	34800	67	3228	7000	18000	68	48	64	110	58
	McKittrick 1-1	15000	19000	48300	9	7238	12000	23000	6	3664	5540	16000	9	29.7	62	132	9
	McKittrick 6, 6A, 6B	13000	13500	14000	2	7700	8200	8700	2	3400	3650	3900	2	65	67	69	2
	Overland Anderson	NA	NA	NA	0			18000	1			8400	1			87	1
	Richardson	NA	NA	NA	0			18000	1			6900	1			47	1
	Roco.	NA	NA	NA	0			22000	1			12000	1			150	1
	Temblor	NA	NA	NA	0			22000	1			9200	1			50	1
	USL	34000	37250	39000	6	18000	23500	24000	6	11000	13000	14000	6	87	92	120	6
Devils Den	Fee (A&B)	23000	26500	30000	4	14000	16500	20000	6	5500	7400	9300	6	6.0	16	25	6
	GraceCairns			13000	1			6500	1			3800	1			1.2	1
	Lebaron			23000	1			13000	1			6200	1			2.5	1
Lost Hills	Galbreath			42000	1.			30000	1			16600				143	1

PSE

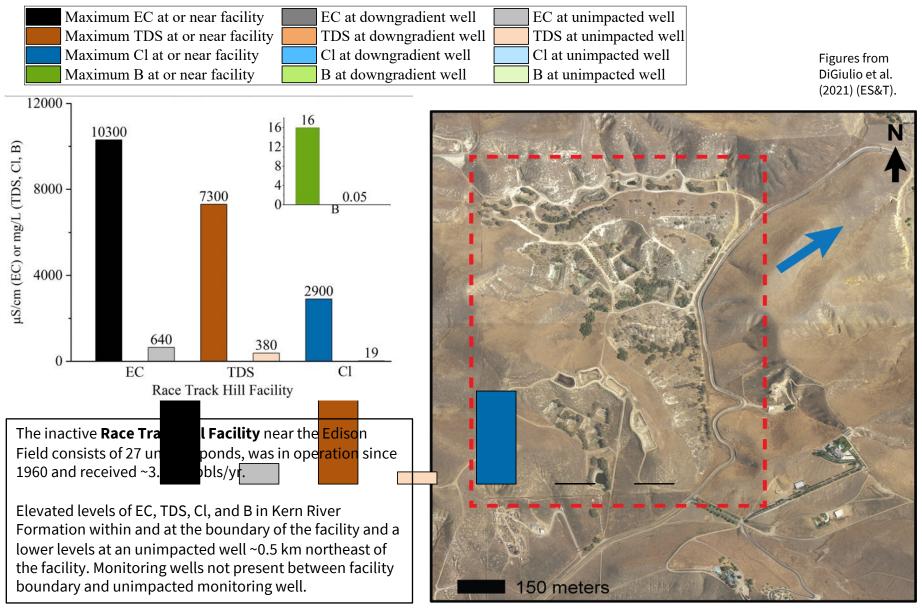
Number of samples, minimum, median, and maximum values of electrical conductivity, total dissolved solids, chloride, and boron for each facility provided in Supporting Information

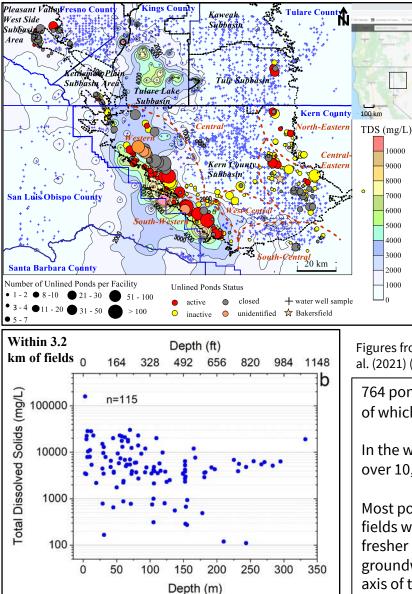

BTEX Detection Facility Summary

Field	Lease	Benzene minimum (µg/L)	Benzene maximum (µg/L)	Detections/ Analyses	Toluene minimum (µg/L)	Toluene maximum (µg/L)	Detections/ Analyses	Ethylbenzene minimum (µg/L)	Ethylbenzene maximum (µg/L)	Detections/ Analyses	Total Xylene minimum (µg/L)	Total Xylenes maximum (µg/L)	Detections/ Analyses
North-Eastern Kern			0				13			0			
Jasmin	Davies Realty		< 0.08	0/1		<0.09	0/1		<0.09	0/1		< 0.36	0/1
Jasmin	Quinn	<0.08	<10	0/25	<0.09	13	8/25	<0.50	13	4/25	<0.50	95	12/25
Kern Front	No. 2 Treatment	< 0.37	<2.0	0/24	< 0.31	7.5	1/24	<0.50	<2.0	0/24	<0.50	<2.0	0/22
	Pedro USL		<2.5	0/1		<2.5	0/1		<2.5	0/1		<2.5	0/1
	Signal		<5.0	0/1		<5.0	0/1		<5.0	0/1		<5.0	0/1
Kern River	Beardsley and Carrier	<1.0	<2.0	0/2	<0.5	<2.0	0/2	<0.5	<2.0	0/2	<1.0	<4.0	0/2
Mount Poso	Jones		<0.50	0/1		<0.50	0/1		<0.50	0/1		<0.50	0/1
Poso Creek	Desert Glow	<2.0	<10	0/2	<2.0	200	1/2	<2.0	<10	0/2	<2.0	<10	0/2
	Government		<5.0	0/1		20.9	1/1		<5.0	0/1		29.6	1/1
	McVan		<2.0	0/1		<2.0	0/1		<2.0	0/1		<2.0	0/1
Central-Eastern Ker			<u>.</u>			-				2			
Edison	Claflin		0.55	1/1		<0.50	0/1		<0.50	0/1		2.6	1/1
	Fee 34	1.6	2410	12/16	<0.50	2210	11/16	<0.	213	7/16	<0.50	1110	14/16
	Lehr	0.52	<5.0	1/2	<0.09	<5.0	0/2	<0.09	<5.0	0/2	< 0.36	<0.50	0/2
	Racetrack	<0.08	0.37	1/4	<0.09	<0.27	0/4	<0.09	0.54	1/4		6.1	1/4
	Race Track Hill	<0.50	320	6/17	<0.50	210	6/17	<0.50	2.0	1/17	<0.50	246	7/17
Western Kern Subb	asin		•		•				•		•		
Asphalto	CA Federal A		1400	1/1		1300	1/1		90	1/1		660	1/1
	Ferguson		1800	1/1		1400	1/1		85	1/1		600	1/1
	Standard	4050	5700	2/2	5600	5990	2/2	310	356	2/2	2160	2770	2/2
Carneros Creek	Anderson	57.8	1340	2/2	10.2	4780	2/2	<5.0	512	1/2	183	2170	2/2
	Standard		<5.0	0/1		5.51	1/1		<5.0	0/1		5.17	1/1
	Santa Fe Energy	780	1340	2/2	875	4780	2/2	86.7	512	2/2	334	2170	2/2
	Theta (30)		323	1/1		348	1/1		90.5	1/1		334	1/1
Chico-Martinez	Mitchel	<1.0	<10.0	4/23	<2.0	13.2	9/232	<1.0	<10.0	8/23	2.2	34	18/23
Cymric	Anderson		200	1/1		<10	0/1		31	1/1		23	1/1
2.5	Ball		<10	0/1		<10	0/1	·	<10	0/1		<10	0/1
	Bowles		<2.0	0/1		<2.0	0/1		2.2	1/1		13	1/1
	Clifford Trust		<2.0	0/1		<2.0	0/1		<2.0	0/1		<2.0	0/1
	Fee		7.6	1/1		5.7	1/1		5.8	1/1		32	1/1
	Lehi-Richardson		<5.0	0/3		<5.0	0/3		<5.0	0/3		</td <td>0/3</td>	0/3
	McKittrick 1&1-3	<0.25	1500	35/57	0.31	1600	45/57	<0.25	120	29/57	1.2	640	42/57
	McKittrick 1-1	<0.50	1100	4/5	<0.50	1300	4/5	<0.50	100	3/5	<0.50	650	3/5
	McKittrick 6, 6A, 6B	0.82	44	2/2	4.0	330	2/2	<0.5	25	1/2	3.0	62	2/2
	Overland Anderson		<2.0	0/1		<2.0	0/1		2.2	1/1		14	1/1
	Richardson		<10	0/1		<10	0/1		<10	0/1		<10	0/1
	Roco		<10	0/1		<10	0/1		<10	0/1		<10	0/1
	Temblor		35	1/1		<2.0	0/1		<2.0	0/1		6.0	1/1
	USL	<5.0	<5.0	0/2	<5.0	<5.0	0/2	<5.0	<5.0	0/2	<5.0	<5.0	0/2
Devils Den	Fee (A&B)	<0.08	< 0.42	0/2	<0.09	< 0.46	0/2	<0.09	<0.49	0/2	<0.36	<1.8	0/2


Number of samples, detection frequency, minimum, and maximum values of benzene, toluene, ethylbenzene, and xylenes at each facility provided in Supporting Information. Low number of detections and variable MDLs for BTEX compounds precluded computation of median values.

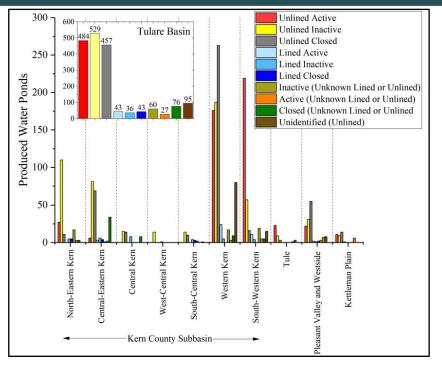
PSE


TDS Levels in Groundwater in Tulare Basin


Central-Eastern Kern County Subbasin

Race Track Hill Facility

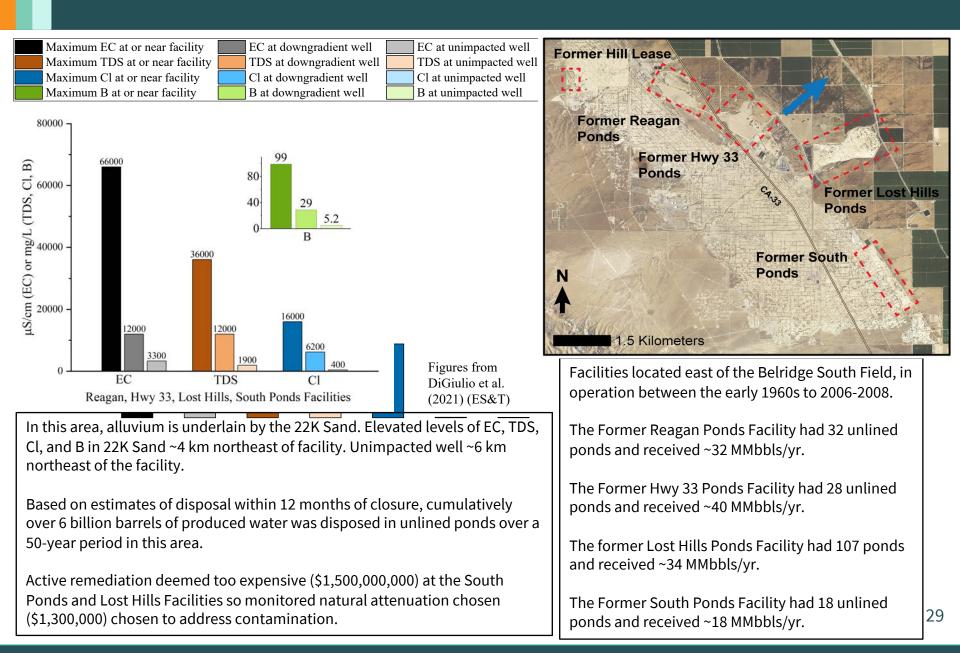
Western Kern County Subbasin

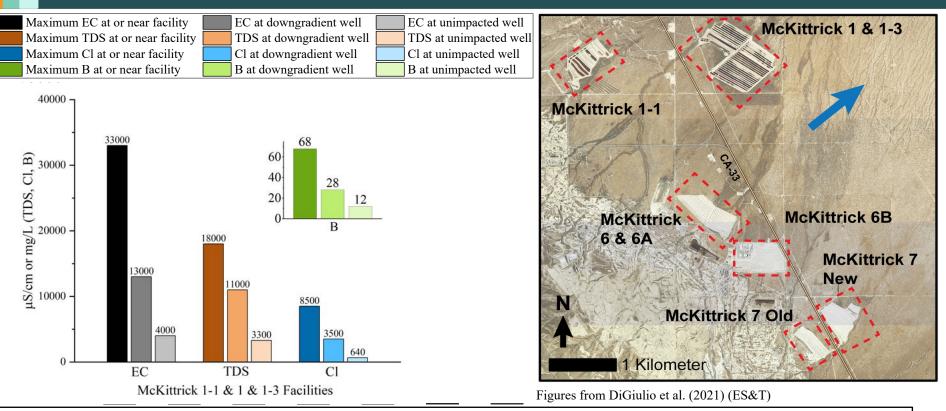


Figures from DiGiulio et al. (2021) (ES&T).

764 ponds of which 626 are unlined of which 176 are still active.

In the western area, TDS <1000 to over 10,000 mg/L with ~350 m.


Most ponds lie directly east of oil fields where this is a transition to fresher (TDS 3,000 – 4,000 mg/L) groundwater toward the synclinal axis of the valley.

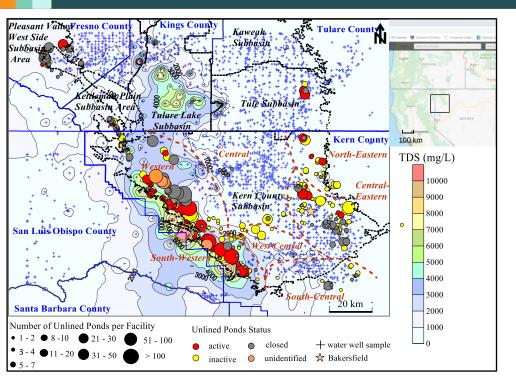

Effluent Limits (EC: 1000 µS/cm, Cl: 200 mg/L, B: 1.0 mg/L)

	Medians	Maximums
EC (μS/cm)	4200-70500	72000
TDS (mg/L)	3635-41000	42000
Chloride (mg/L)	150-24000	36000
Boron (mg/L)	1.9-260	290
Benzene (µg/L)		5700
Toluene (µg/L)		5990
Ethylbenzene (μg/L)		4000
Xylenes (μg/L)		20700

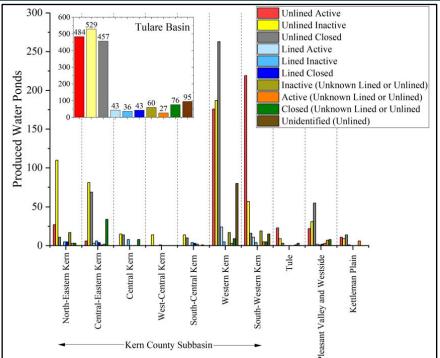
Reagan, Hwy 33, Lost Hills, and South Ponds Facilities

McKittrick 1-1 and 1 & 1-3 Facilities

The active McKittrick 1-1 and 1 & 1-3 Facilities located east of the Cymric Field have been in operation between the early 1960s.

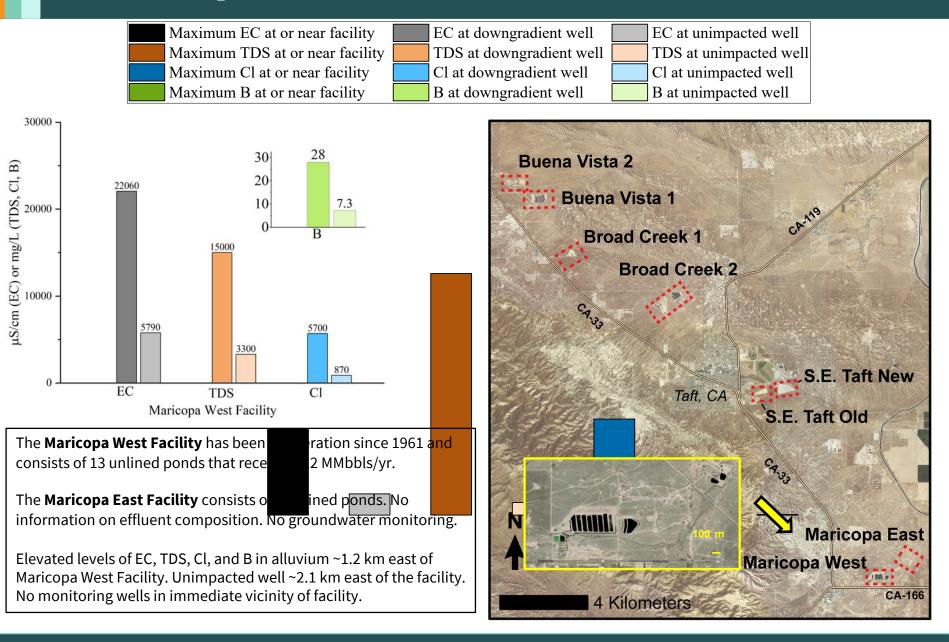

The McKittrick 1-1 Facility consists of 23 unlined ponds and receives ~13 MMbbls/yr.

The McKittrick 1&1-3 Facility consists of 62 unlined ponds and receives ~25 MMbbls/yr.


In the vicinity of the facility, produced water has saturated the Upper Tulare Formation present beneath alluvium and the Corcoran Clay Equivalent and contaminated the Lower Tulare Formation – the regional aquifer. Groundwater in alluvium and the Upper Tulare Formation transition from variably saturated media to regional aquifers east-northeast of the facility.

Elevated levels of EC, TDS, Cl, and B detected in the Lower Tulare Formation ~ 2 km northeast of facilities. Unimpacted monitoring well 30 in Lower Tulare Formation ~3 km further northeast of the facility.

South-Western Kern County Subbasin


Contains the Buena Vista and Midway-Sunset Fields. 351 ponds of which 292 are unlined of which 219 are still active.

	Medians	Maximums
EC (μS/cm)	5180-48000	215585
TDS (mg/L)	3400-32200	94984
Chloride (mg/L)	1100-20000	59600
Boron (mg/L)	24-123	360
Benzene (µg/L)		3600
Toluene (μg/L)		4600
Ethylbenzene (μg/L)		730
Xylenes (μg/L)		3060

Maricopa Facilities

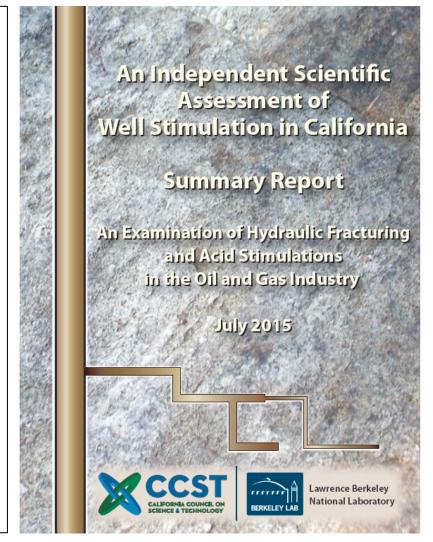
Implications of Investigation

The disposal of produced water into unlined produced water ponds has been occurring since the early 1900s and continues to this day.

Produced water often has high levels of electrical conductivity, total dissolved solids, chloride, boron, and volatile organic compounds, such as benzene, which are mobile in groundwater.

Disposal of produced water into unlined ponds often overlies groundwater having present and future potential use.

Groundwater monitoring is sparse, but where monitoring has occurred, impact to groundwater resources has been observed and proven too expensive to actively remediate.



Disposal Practice Should Be Better Regulated

In January 2015, in an independent scientific study conducted pursuant to CA Senate Bill 4 and commissioned by the CA Natural Resources Agency on well stimulation in California, the CA Council on Science & Technology and the Lawrence Berkeley National Laboratory concluded that the disposal of produced water in unlined ponds poses a risk to groundwater resources in California and that produced water discharged to unlined produced water ponds should contain non-hazardous concentrations of chemicals or their use should be phased out in the future.

They stated further that groundwater investigations should be conducted to determine if historical disposal activities have impacted groundwater resources in the vicinity of these ponds.

Results of our comprehensive assessment of unlined ponds bolsters these recommendations.

Better Regulation with Consistent Definition of Protected Groundwater

Maximum TDS	Applicability to O&G	Enforceability	Overseeing
(mg/L)	Industry		Agencies
3,000 mg/L or EC < 5,000 μS/cm for municipal water supply (MUN)	Land disposal, produced water ponds	States Sources of Drinking Water Policy (SWRCB Res No. 88-63 (SWRCB 2006). TDS and EC not defined for other beneficial use such as that used for agriculture (AGR).	SWRCB
Undefined	Conventional O&G Development	PRC § 1722.22 for casing requirements	CalGEM
10,000	Well stimulation	USDW, CA Water Code § 10783(k)(2)	CalGEM, SWRCB
10,000	UIC Program	UDSW, protected unless exempted, 40 C.F.R. 144.3	EPA, CalGEM
10,000	O&G development on federal or tribal land	Onshore Oil & Gas Order No. 2, 53 Federal Register 46798	BLM, CalGEM, SWRCB

This investigation supports a recommendation that the definition of protected groundwater during disposal of produced water into unlined produced water ponds should be consistent with the definition of protected groundwater utilized in California's UIC program and for hydraulic fracturing.

This inconsistency appears to be the major driver for this continued disposal practice, especially in the western and south-western portion of the Kern Subbasin or Tulare Basin.

Thank You

Dominic C. DiGiulio, PhD Senior Scientist domdigiuliopsehealthyenergy.org

Bringing science to energy policy

www.psehealthyenergy.org

Supplemental Slides

Oil Development in the San Joaquin Valley

Photo Fracktracker.org

The San Joaquin Valley is one of the oldest (1870s) and most productive oil and gas producing basins in the U.S., with more than 100,000 oil and gas wells.

Water Use in the San Joaquin Valley

The San Joaquin Valley is one of the most agriculturally productive regions in the world.

The San Joaquin Valley supplies over one-third of the vegetables and two-thirds of the fruits and nuts consumed in the United States.

Agriculture in the San Joaquin Valley is dependent on surface water from winter/spring snowpack melt with excess demand met by groundwater withdrawal especially during drought years.

Photo credit: Richard Thornton/Shutterstock

The San Joaquin Valley also has nearly 4 million residents, most of which rely on groundwater for domestic water supply.

Sustained Droughts

The drought and continued groundwater depletion in the San Joaquin Valley has highlighted the need to protect remaining groundwater resources from degradation associated with industrial practices including those associated with oil and gas development.

Photo credit: USGS

The 2012 - 2016 drought was unprecedented at least over the past 1,200 years.

Severity in large part caused by elevated temperatures from climate change and resultant increased evapotranspiration.

There is climatic regime emerging in which all future dry years will coincide with unusually warm years increasing sustained severe droughts.

The drought resulted in substantial groundwater depletion in the Central Valley as measured by water balance methods and Gravity Recovery and Climate Experiment (GRACE) satellite imagery.

Increasing Produced Water Production

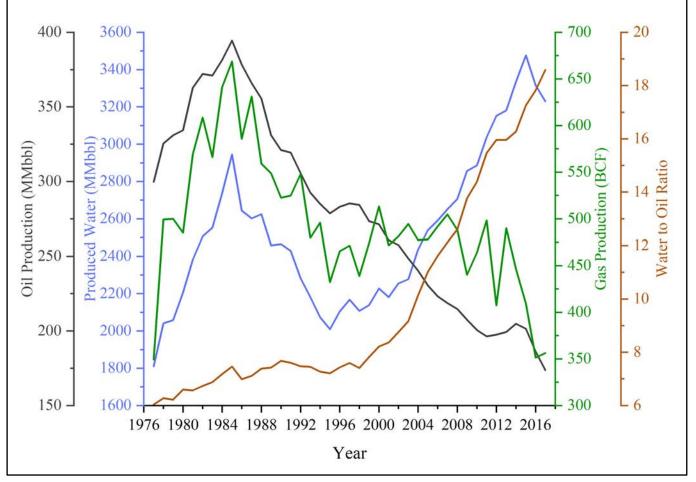


Figure from DiGiulio et al. (2021)

PSE

Produced water generation continues to increase in California despite falling oil and natural gas production.

Disposition with Time for Surface Disposal

Disposal of produced water into unlined produced water ponds decreased precipitously after 2014, corresponding to only 1.4% in 2017 (45 MMbbls) of produced water disposition that year.

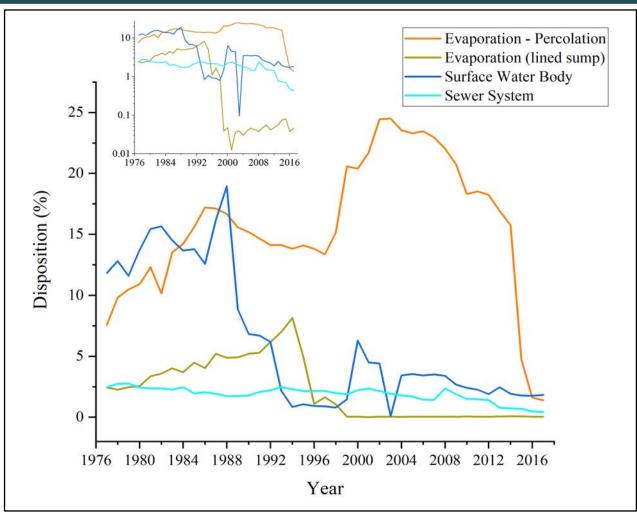
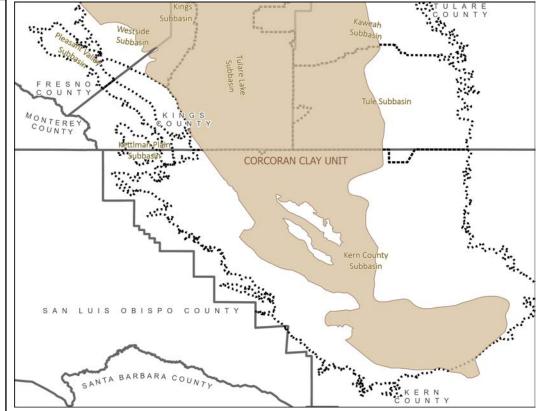
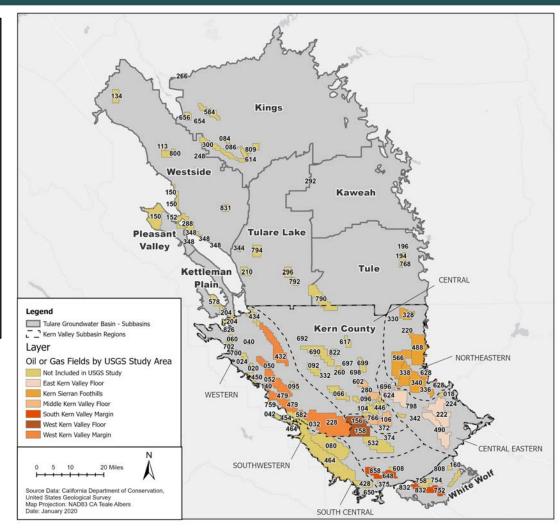



Figure from DiGiulio et al. (2021).

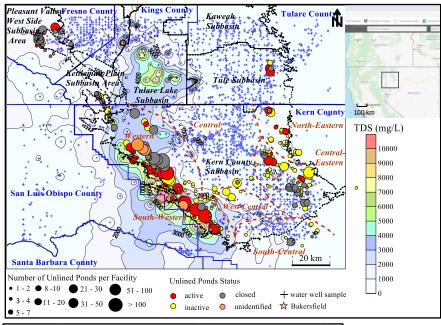
Corcoran Clay Unit

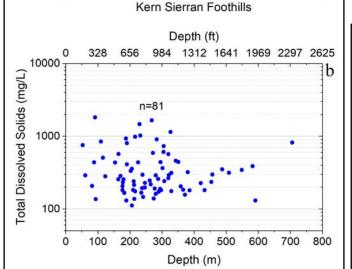
During Pleistocene time, most of the San Joaquin Valley was inundated by lakes that accumulated up to 60 m of clay often referred to as the Corcoran Clay member of the Tulare Formation now overlying alluvium. Coarser-grained zones are present when the clay is less than 6 m in thickness along the western edge of the unit where many unlined ponds are located. In the central part of the basin, the Corcoran Clay divides the groundwater flow system into an upper unconfined zone in alluvium and a lower confined or semiconfined zone in the Tulare Formation. However, thousands of irrigation wells have perforated the Corcoran Clay and increased the hydraulic connection between these units.


Plot illustrating the extent of Corcoran Clay Unit in the Tulare Basin. Shape file from USGS (1986). Figure from DiGiulio et al. (2021) (ES&T).

Groundwater Subbasins in the Tulare Basin

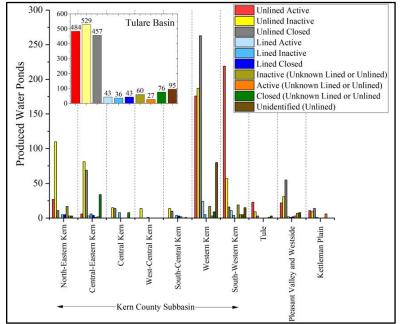
The California Department of Water Resources created groundwater subbasins using geologic and hydrologic barriers or more commonly institutional boundaries for the purpose of managing water resources.


Portions of the Kern County Subbasin were subdivided in this investigation based on USGS groundwater resource investigations because of large number of ponds.



Outline of groundwater subbasins in the Tulare Groundwater Basin (solid lines) and areas within the Kern County Subbasin (dashed lines) and oil and gas fields in six USGS groundwater study areas (Metzger and Landon, 2018). Numbers in polygons refer to field codes of oil and gas fields. Figure from DiGiulio et al. (2021) (ES&T).

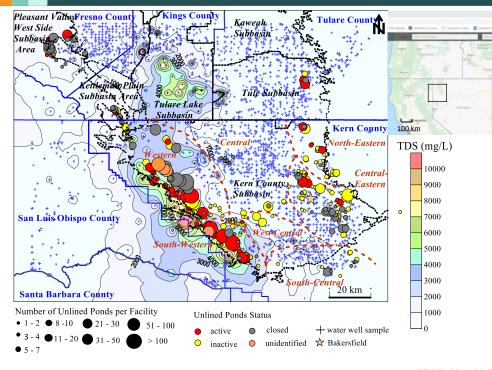
North-Eastern Kern County Subbasin


Figures from DiGiulio et al. (2021) (ES&T).

181 ponds of which 148 are unlined of which 27 are still active.

At some fields in this area, produced water is blended with groundwater and surface water for irrigation.

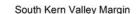
In the north-eastern Kern County Subbasin, TDS levels in groundwater are generally <1000 mg/L to a depth ~ 700 m.

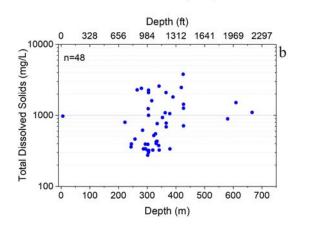

No groundwater monitoring of unlined ponds used for disposal.

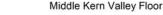
Effluent Limit (EC: 1000 μS/cm, Cl: 200 mg/L, B: 1.0 mg/L)

Effluent	Medians	Мах
EC (μS/cm)	550-894	1800
TDS (mg/L)	360-573	6400
Chloride (mg/L)	56-128	1400
Boron (mg/L)	0.24-1.4	7.9
Benzene (µg/L)		<10
Toluene (µg/L)		200
Ethylbenzene (μg/L)		13
Xylenes (µg/L)		95

South-Central, Central, West-Central Kern County Subbasin


In the south-central area, TDS <3000 mg/L to ~700 m. In central area, TDS <3000 mg/L to ~250 m,. In westcentral area, TDS <3000 mg/L to ~350m.


Primary concern 67 inactive and closed unlined ponds.


No historic effluent data but produced water is saline in this area indicating saline water likely disposed in unlined ponds.

No groundwater monitoring.

Figures from DiGiulio et al. (2021) (ES&T).

164

n=7

50

10000

1000

100

Fotal Dissolved Solids (mg/L)

Depth (ft)

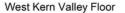
328

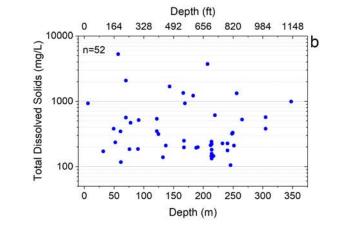
100

492

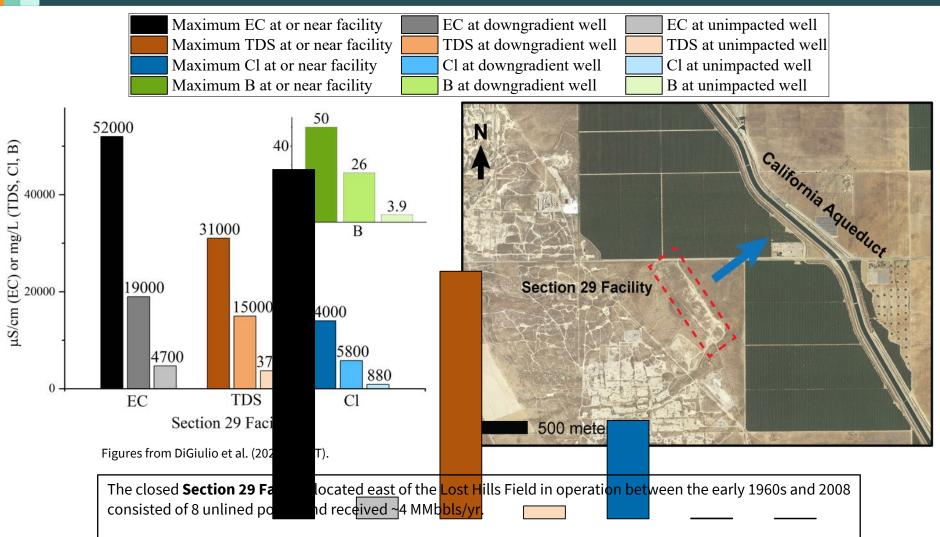
150

Depth (m)

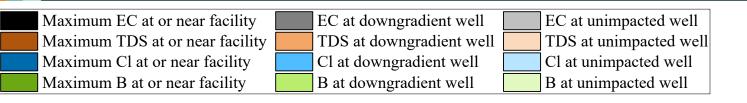

656

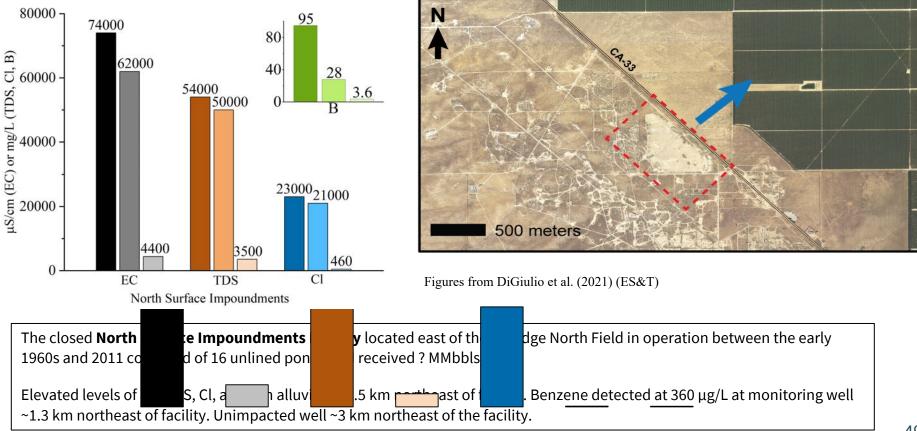

200

820

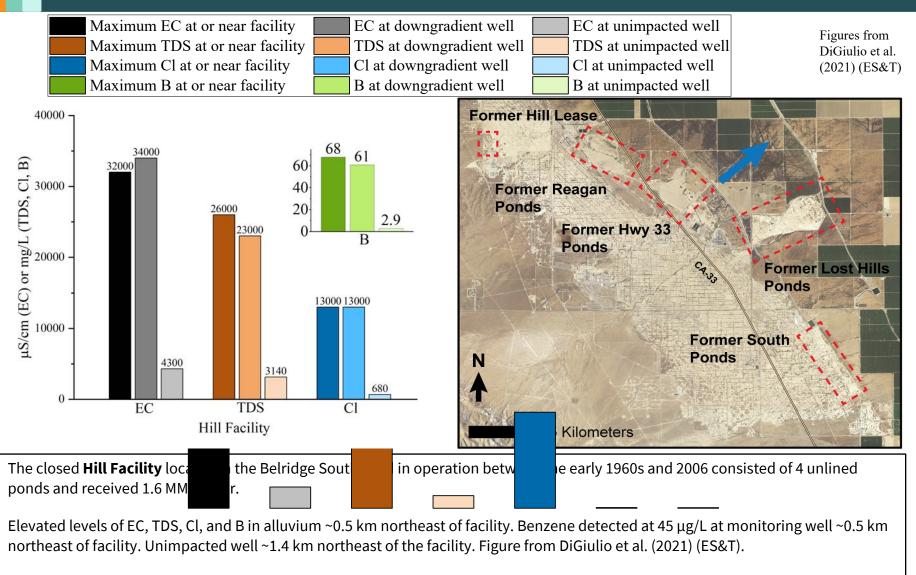

250

h




Section 29 Facility

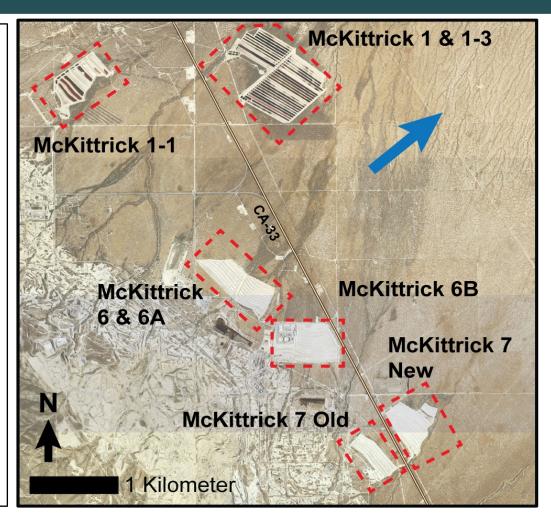
Elevated levels of EC, TDS, Cl, and B in alluvium ~1.7 km northeast of the facility. BTEX components, and other hydrocarbons (e.g., naphthalene, methyl naphthalenes, trimethylbenzenes) detected in groundwater within ~0.5 km of the facility boundary. Unimpacted monitoring wells ~1.8 km from facility.


North Surface Impoundments Facility

Hill Facility

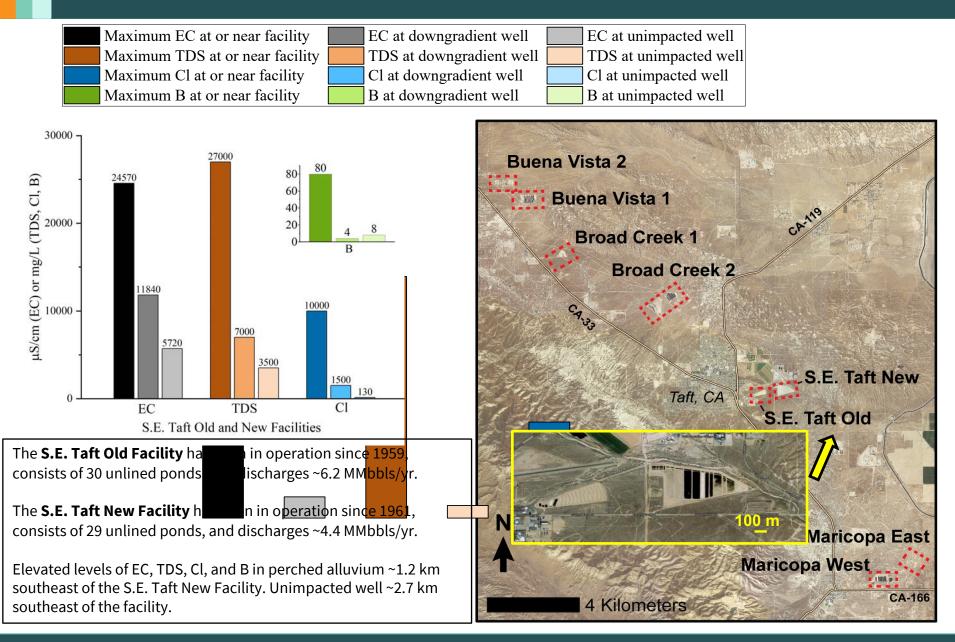
Active remediation deemed too expensive (\$24,000,000) so monitored natural attenuation chosen (\$674,000) chosen to address contamination.

McKittrick 6 & 6A, 6B,7 New, and 7 Old

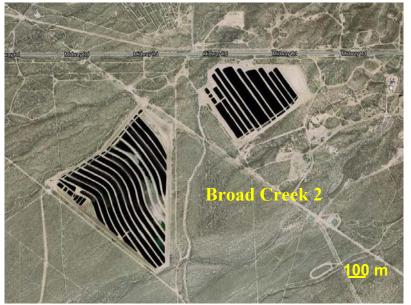

A large complex of inactive facilities is located directly south of the McKittrick 1-1 and 1 & 1-3 Facilities.

The **McKittrick 6, 6A, and 6B Facility** have been in operation since the late 1960s, consist of 56 unlined ponds and received 36.5 MMbbls in 2001.

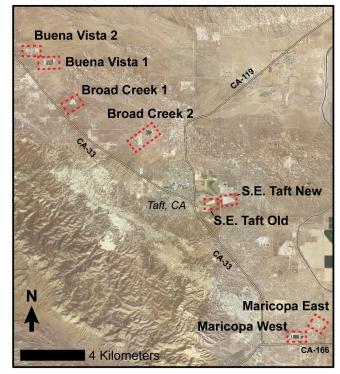
The **McKittrick 7 Old and 7 New Facility** consists of 38 unlined ponds and received 5.5 MMbbls in 2001.


The facility operator intends to close these facilities. Available documentation to date indicates no plans to install monitoring wells at these facilities.

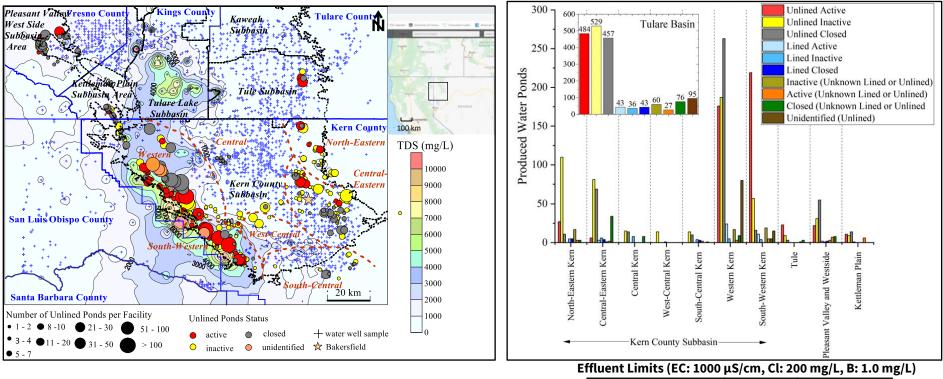
Based on available discharge records, cumulatively, at least 4.75 billion barrels of produced water have been disposed in unlined ponds in the McKittrick ponds over a 60-year period.


S.E. Taft Old and New Facilities

Buena Vista and Broad Creek Facilities


Buena Vista 1 Facility: 39 unlined ponds, **Buena Vista 2:** 27 unlined ponds, combined discharge ~19 MMbbls in operation since late 1950s.

Broad Creek 2 Facility: 37 unlined ponds, combined discharge ~12 MMbbls/yr

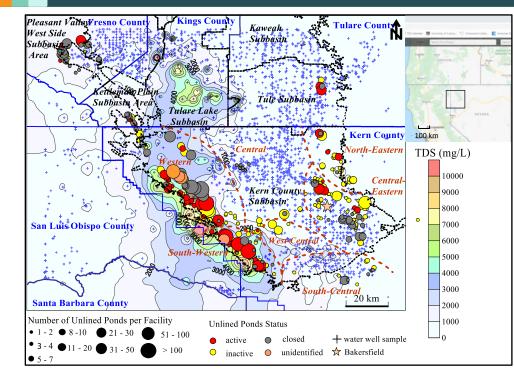

Broad Creek 1 Facility: 11 unlined ponds

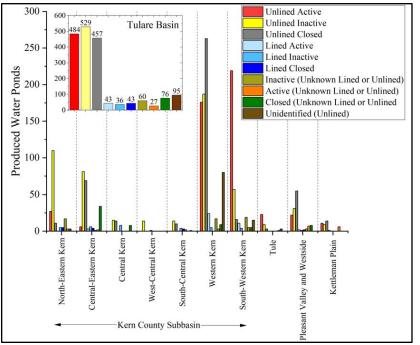
No groundwater monitoring at any of these facilities.

Tule Subbasin

•		
Effluent	Medians	Maximum
EC (μS/cm)	500-680	940
TDS (mg/L)	310-405	3298
Chloride (mg/L)	30-130	1954
Boron (mg/L)	0.66-0.89	3.2
Benzene (µg/L)		1.3
Toluene (μg/L)		120
Ethylbenzene (µg/L)		57
Xylenes (μg/L)		240

54


Unlined ponds associated with the Deer Creek Field.


39 ponds of which 35 are unlined of which 23 are still active.

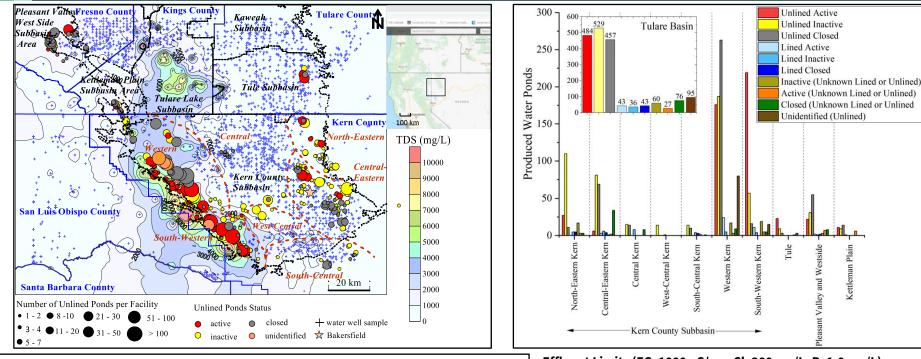
No area-wide clay layers to restrict vertical movement.

No groundwater monitoring.

Pleasant Valley and West Side Subbasin Area

Effluent Limits (EC: 1000 µS/cm, Cl: 200 mg/L, B: 1.0 mg/L)

	Medians	Maximums
EC (µS/cm)	5650-29000	71000
TDS (mg/L)	3800-12000	38000
Chloride (mg/L)	254-6100	22000
Boron (mg/L)	6.4-62	170
Benzene (µg/L)		210
Toluene (μg/L)		180
Ethylbenzene (μg/L)		79
Xylenes (µg/L)		180


Most unlined ponds in this area are situated on anticlinal structures and are associated with the Coalinga Field.

131 ponds of which 108 are unlined of which 22 are still active.

Facility operators have argued that groundwater is of "poor" quality and that disposal poses little risk to "potable" groundwater.

No groundwater monitoring.

Kettleman Plain Subbasin Area

The primary field is the Pyramid Hills Field contains 41 ponds of which 34 are unlined of which 11 are still active.

Facility operators state that first encountered groundwater is oil bearing.

There is no groundwater monitoring to confirm the presence or absence of groundwater having beneficial use.

Effluent Limits (EC: 1000 $\mu S/cm,$ Cl: 200 mg/L, B: 1.0 mg/L)

	Medians	Maximums
EC (µS/cm)	12500-18500	31000
TDS (mg/L)	7850-12500	23000
Chloride (mg/L)	2100-4400	6700
Boron (mg/L)	12-20	29
Benzene (µg/L)		88
Toluene (μg/L)		62
Ethylbenzene (µg/L)		30
Xylenes (µg/L)		191

